FRICTION

Dry Friction

1) The friction is always opposite to the direction of motion.
2) $\mathrm{F}=\mathrm{M}_{\mathrm{s}} \mathrm{N}$ only when motion is impending, where: M_{s} is static coefficient of friction.
3) When motion exists $\mathrm{F}=\mathbf{M}_{\mathrm{k}} \mathbf{N}=$ constant independent velocity, where: M_{k} is kinetic coefficient of friction. $M_{k}<M_{s}\left(M_{k} \approx 3 / 4 M_{s}\right)$
4) When there are no motion or impending motion $F \neq M_{s} N \neq M_{k} N$, F is computed from equilibrium.

Rough surface

Angle of Friction \varnothing

Angle of friction is the angle between $N \& R$, in the case of impending motion

$$
\tan \emptyset_{s}=\frac{M_{s} N}{N}=M_{s}
$$

In case of motion

$$
\emptyset_{k}=\tan ^{-1} M_{k}
$$

Types of Problems Involving Friction

1- Case of impending motion
Put $\quad \mathrm{F}=\mathrm{M}_{\mathrm{s}} \mathrm{N}$ and solve for the unknown using equilibrium equations.

2- Case of steady motion
Put $F=M_{k} N$ and apply equilibrium equations to solve for the unknowns.

3- Unknown case (not clear the body is in equilibrium or in motion)
A. Denote the friction force by F
B. Assume equilibrium, find F
C. Compute $\quad \mathrm{F}^{*}=\mathrm{M}_{\mathrm{s}} \mathrm{N}$

When $\mathrm{F}<\mathrm{F}^{*}$ the body is in equilibrium
But when $F>F^{*}$ the body is in motion, and the actual friction force is $F=M_{k} N$

Ex: Determine the maximum angle Θ before the block of mass m begins to slip, $\left(M_{s}=0.3\right)$.

Max Θ when motion impends

$$
\mathrm{F}=0.3 * \mathrm{~N}
$$

$$
\sum F_{x}=0 ; \quad 0.3 * N-m * g * \sin \theta=0
$$

$$
\begin{equation*}
0.3 * N=m * g * \sin \theta \tag{1}
\end{equation*}
$$

$$
\sum F_{y}=0 ; \quad N-m * g * \cos \theta=0
$$

$$
\begin{equation*}
N=m * g * \cos \theta \tag{2}
\end{equation*}
$$

$$
\frac{0.3 N}{N}=\frac{m g \sin \theta}{m g \cos \theta}
$$

$\operatorname{Tan} \theta=0.3$
Then $\Theta=16.7$

Ex: Given $\mathrm{M}_{\mathrm{s}}=0.25$ and $\mathrm{M}_{\mathrm{k}}=0.2$, determine whether the block is in equilibrium or not, also find the value of the friction force.

1) The friction force F
2) Assume equilibrium

$$
\sum F_{x}=0
$$

$-F+100-180=0$
Then $F=-80$ (N)

Tendency of motion is down
$\mathrm{F}^{*}=\mathrm{M}_{\mathrm{s}} \mathrm{N}$

$$
\sum F_{y}=0
$$

$N=300 \cos 36.87$
Then $\mathrm{N}=240$ (N)
$\mathrm{F}^{*}=\mathrm{M}_{\mathrm{s}} \mathrm{N}=0.25 * 240=60(\mathrm{~N})$
Since $F>F^{*}$ the body is moving downwards, then the friction force is $\mathrm{F}=\mathrm{M}_{\mathrm{k}} \mathrm{N}$
$\mathrm{F}=0.2$ * $240=48(\mathrm{~N})$
$E X$: Determine the max value of P before any slipping teak place.
$m=0.3$ for $A, m=0.4$ for $B, m=0.45$ for C
Solution
Impending motion $f=m_{s} N$
Case (1)
Block C fixed, block B impends motion
For block A
$\sum F_{y}=0 ; N_{1}=30 g \cos 30$ then $N_{1}=255(N)$

For block B

$$
\begin{aligned}
\Sigma \mathrm{F}_{\mathrm{y}}=0 ; \quad \mathrm{N}_{2} & =\mathrm{N}_{1}+50 \mathrm{~g} \cos 30 \\
& =255+50 * 9.81 * 0.866 \\
\mathrm{~N}_{2} & =680 \quad(\mathrm{~N}) \\
\Sigma \mathrm{F}_{\mathrm{x}}=0 ; \quad \mathrm{P} & =0.3 \mathrm{~N}_{1}+0.4 \mathrm{~N}_{2}-50 \mathrm{~g} \sin 30 \\
& =0.3 * 255+0.4 * 680-50 * 9.81 * 0.5 \\
\mathrm{P} & =103.1 \quad(\mathrm{~N})
\end{aligned}
$$

Case (2)

Block B and C impend motion together

$$
\begin{gather*}
\sum F_{y}=0 ; \quad N_{3}=N_{1}+90 g \cos 30 \\
=1019.6(\mathrm{~N}) \tag{N}
\end{gather*}
$$

$$
\begin{gathered}
\sum F_{x}=0 ; \quad P=0.3 \quad N_{1}+0.45 N_{3}-90 g \sin 30 \\
P=93.8 \quad(N)
\end{gathered}
$$

$$
\begin{equation*}
P_{\max }=93.8 \tag{N}
\end{equation*}
$$

Determine the smallest force \mathbf{P} that made block \mathbf{A} impending motion. The two blocks have a weight of $\mathrm{W}=10 \mathrm{~N}$, if the coefficients of static friction for all surfaces are $\mu_{\mathrm{s}}=0.3$. Neglecting the rod weight, the rod angle is $\theta=30^{\circ}$.

SOLUTION

FBD block B:

FBD block A:

(b) For $P_{\text {axa }}$, motion impends at both surfaces

B: $\quad \mid \Sigma F_{y}=0: N_{n}-10 \mathrm{lb}-F_{A B} \cos 30^{\circ}=0$

$$
\begin{equation*}
N_{z}=10 \mathrm{lb}+\frac{\sqrt{3}}{2} F_{A B} \tag{1}
\end{equation*}
$$

Impending motion:

$$
F_{g}=\mu_{s} N_{g}=0.3 N_{B}
$$

$$
\begin{align*}
-\Sigma F_{s}=0: & F_{B}-F_{A B} \sin 30^{\circ}=0 \\
& F_{A B}=2 F_{B}=0.6 N_{B} \tag{2}
\end{align*}
$$

Solving (1) and (2)

$$
\begin{aligned}
N_{s} & =10 \mathrm{lb}+\frac{\sqrt{3}}{2}\left(0.6 N_{3}\right) \\
& =20.8166 \mathrm{lb}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Then } \quad F_{A z}=0.6 N_{B}=12.4900 \mathrm{Bb} \\
& \text { A: } \rightarrow \Sigma F_{A}=0: F_{A B} \sin 30^{\circ}-N_{A}=0 \\
& N_{A}=\frac{1}{2} F_{A S}=\frac{1}{2}(12.4900 \mathrm{Db})=6.2450 \mathrm{Ib} \\
& \text { Impending motion: } \\
& F_{A}=\mu_{B} N_{A}=0.3(6.2450 \mathrm{lb})=1.8735 \mathrm{lb} \\
& \begin{aligned}
\mid \Sigma F_{Y}= & 0: F_{A}+F_{A B} \cos 30^{\circ}-P-10 \mathrm{lb}=0 \\
P & =F_{A}+\frac{\sqrt{3}}{2} F_{A B}-10 \mathrm{lb} \\
& =1.8735 \mathrm{lb}+\frac{\sqrt{3}}{2}(12.4900 \mathrm{lb})-10 \mathrm{Jb}=2.69 \mathrm{lb}
\end{aligned} \\
& P=2.69 \mathrm{lb} 4
\end{aligned}
$$

Since $P=2.69 \mathrm{lb}$ to initiate motion,

For the figure below, determine the minimum value of P that makes block C sliding down. The coefficient of friction between all surfaces is 0.4.

Case (1) A\&B moves up and C move down

$$
\begin{aligned}
& \mathrm{N} 1=29.74 \mathrm{~N} \\
& \mathrm{~F} 1=11.9 \mathrm{~N} \\
& \mathrm{~T}=29.1 \mathrm{~N} \\
& \mathrm{~N} 2=63.72 \mathrm{~N} \\
& \mathrm{P}=45.88 \mathrm{~N}
\end{aligned}
$$

Case (2) A moves up and C\&B move down

$$
\begin{aligned}
& \mathrm{N} 1=17 \mathrm{~N} \\
& \mathrm{~F} 1=6.8 \mathrm{~N} \\
& \mathrm{~T}=16.6 \mathrm{~N} \\
& \mathrm{~N} 2=63.73 \mathrm{~N} \\
& \hline \mathrm{P}=21.9 \mathrm{~N}
\end{aligned}
$$

H.W :

Chapter 6:
3, 5, 7, 8,22, 24

