

Dry Friction

- 1) The friction is always opposite to the direction of motion.
- 2) $F = M_s N$ only when motion is impending, where: M_s is static coefficient of friction.
- 3) When motion exists F = M_k N = constant independent velocity, where: M_k is kinetic coefficient of friction. M_k < M_s (M_k ≈ ¾ M_s)
 4) When there are no motion or impending motion F ≠ M_s N ≠ M_k N ,
 - **F** is computed from equilibrium.

Rough surface

Angle of Friction Ø

Angle of friction is the angle between N & R, in the case of impending motion

$$\tan \phi_s = \frac{M_s N}{N} = M_s$$

In case of motion

$$\emptyset_k = tan^{-1} M_k$$

Types of Problems Involving Friction

1- Case of impending motion

Put $F = M_s$ N and solve for the unknown using equilibrium equations.

2- Case of steady motion

Put $\mathbf{F} = \mathbf{M}_k$ N and apply equilibrium equations to solve for the unknowns.

- 3-<u>Unknown case (not clear the body is in equilibrium or in</u> motion)
- A. Denote the friction force by F
- B. Assume equilibrium, find F
- C. Compute $F^* = M_s N$

When $F \leq F^*$ the body is in equilibrium

But when $F \ge F^*$ the body is in motion, and the actual friction force is $F = M_k N$

Ex: Determine the maximum angle Θ before the block of mass m begins to slip, (M_s = 0.3).

mg

Ex: Given $M_s = 0.25$ and $M_k = 0.2$, determine whether the block is in equilibrium or not, also find the value of the friction force.

- 1) The friction force F
- 2) Assume equilibrium

$$\sum F_x = 0$$

-F + 100 - 180 = 0Then F = - 80 (N) Tendency of motion is down F^{*} = M_s N

$$\sum F_y = 0$$
N = 300 cos 36.87
Then N = 240 (N)
F^{*} = M_s N = 0.25 * 240 = 60 (N)
Since F > F^{*} the body is moving downwards,
then the friction force is F = M_k N
F=0.2 * 240 = 48 (N)

$$\frac{100 \text{ N}}{300 \text{ N}} = \frac{3}{4}$$

$$\Rightarrow \theta = 36.87$$

EX: Determine the max value of P before any slipping teak place. m = 0.3 for A, m = 0.4 for B, m = 0.45 for C 30 kg **Solution** 50 Kg μ= 0.30 Impending motion $f = m_s N$ 40 kg μ= 0.45 **Case (1)** = 0.40 Block C fixed, block B impends motion 30 For block A $\Sigma F_v = 0$; N₁ = 30 g cos 30 then N₁ = 255 (N) 30(9.81) N 30° For block B $\Sigma F_v = 0$; $N_2 = N_1 + 50 \text{ g cos } 30$ = 255 + 50 * 9.81 * 0.866 $N_2 = 680$ (N) 50(9.81) N $\Sigma F_x = 0$; P = 0.3 N₁+ 0.4 N₂ - 50 g sin 30 = 0.3 * 255 + 0.4 * 680 - 50 * 9.81 * 0.5 N_2 P = 103.1 (N) F_2

<u>Case (2)</u>

Block B and C impend motion together

$$\Sigma F_y = 0$$
; $N_3 = N_1 + 90 \text{ g cos } 30$
= 1019.6 (N)

$$\Sigma F_x = 0$$
; P = 0.3 N₁+ 0.45 N₃ - 90 g sin 30
P = 93.8 (N)

P_{max} = 93.8 (N)

Determine the smallest force **P** that made block **A** impending motion. The two blocks have a weight of W= 10 N , if the coefficients of static friction for all surfaces are $\mu_s = 0.3$. Neglecting the rod weight, the rod angle is $\Theta = 30^{\circ}$.

SOLUTION

FBD block B:

FBD block A:

(b)	For Pmax, motion in	apends at both surfaces
	$B: \qquad \ \ \sum F_y = 0:$	$N_B - 10 \text{ lb} - F_{AB} \cos 30^\circ = 0$
		$N_B = 10 \text{ lb} + \frac{\sqrt{3}}{2} F_{AB} \tag{1}$
	Impending motion:	$F_B = \mu_s N_B = 0.3 N_B$
	$\rightarrow \Sigma F_s = 0$:	$F_B - F_{AB} \sin 30^\circ = 0$
		$F_{AB} = 2F_B = 0.6N_B \tag{2}$
	Solving (1) and (2)	$N_B = 10 \text{ lb} + \frac{\sqrt{3}}{2} (0.6 N_B)$
		= 20.8166 lb
	Then	$F_{AB} = 0.6N_B = 12.4900$ lb
	$A: \longrightarrow \Sigma F_{g} = 0;$	$F_{AB}\sin 30^{\alpha} - N_{A} = 0$
		$N_A = \frac{1}{2}F_{AB} = \frac{1}{2}(12.4900 \text{ lb}) = 6.2450 \text{ lb}$
	Impending motion:	$F_A = \mu_s N_A = 0.3 (6.2450 \text{ lb}) = 1.8735 \text{ lb}$
	$\uparrow \Sigma F_{r} = 0$:	$F_A + F_{AB} \cos 30^\circ - P - 10 \text{lb} = 0$
	<i>P</i> =	$=F_{A}+\frac{\sqrt{3}}{2}F_{AB}-10$ lb
		= $1.8735 \text{ lb} + \frac{\sqrt{3}}{2} (12.4900 \text{ lb}) - 10 \text{ lb} = 2.69 \text{ lb}$
		P = 2.69 lb ◀
		Since $P = 2.69$ lb to initiate motion,

For the figure below, determine the minimum value of P that makes block C sliding down. The coefficient of friction between all surfaces is 0.4.

Case (1) A&B moves up and C move down

N1 = 29.74 N F1= 11.9 N T=29.1 N N2=63.72 N P=45.88 N

Case (2) A moves up and C&B move down

H.W :Chapter 6:3, 5, 7, 8,22, 24